--- title: "Introduction" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} ``` StructuralDecompose is a method that breaks a time series algorithm into various parts. It is particularly well suited to a time series that has several level shifts within it. StructuralDecompose returns the series constituent parts including its Trend, Seasonality and residuals. As well as a fairly inbuilt summary of the time series itself and how well it has fit the data. As it performs inbuilt Anomaly Detection, it also returns a series of points that it considers to be anomalies. However more advanced anomaly detection techniques should be considered if you are doing anomaly detection on the time series.